# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 5-(3-Methoxyphenethyl)-4-(2-methoxyphenyl)-4H-1,2,4-triazol-3-ol

### Muhammad Hanif,<sup>a</sup> Ghulam Qadeer,<sup>a</sup> Nasim Hasan Rama<sup>a</sup>\* and Wai-Yeung Wong<sup>b</sup>

<sup>a</sup>Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and <sup>b</sup>Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong Correspondence e-mail: nasimhrama@yahoo.com

Received 6 October 2008; accepted 17 October 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.146; data-to-parameter ratio = 18.5.

In the molecule of the title compound,  $C_{18}H_{19}N_3O_3$ , the triazole ring is oriented with respect to the 3-methoxyphenyl and 2-methoxyphenyl rings at dihedral angles of 11.79 (3) and  $89.22 (3)^{\circ}$ , respectively. The dihedral angle between the two benzene rings is 85.95 (3)°. In the crystal structure, intermolecular O-H···N and C-H···O hydrogen bonds link the molecules. There is a  $\pi$ - $\pi$  contact between the triazole and 3methoxyphenyl rings [centroid–centroid distance 3.916 (3) Å]. There is a  $\pi - \pi$  contact between the triazole and one of the 3-methoxyphenyl rings [centroid-centroid distance = 3.916 (3) Å ]. C–H··· $\pi$  contacts are also found between the benzene ring and the methyl groups of their 3methoxy-substituents.

#### **Related literature**

For general background, see: Demirbas et al. (2002); Holla et al. (1998); Kritsanida et al. (2002); Omar et al. (1986); Paulvannan et al. (2000); Turan-Zitouni et al. (1999). For related structures, see: Öztürk et al. (2004a,b). For bond-length data, see: Allen et al. (1987).



**Experimental** 

Crystal data

| $C_{18}H_{19}N_3O_3$ |
|----------------------|
| $M_r = 325.36$       |
| Monoclinic, $P2_1/n$ |
| a = 10.5030 (11)  Å  |
| b = 14.1172(14) Å    |
|                      |

c = 11.3226 (11) Å $\beta = 98.192 \ (2)^{\circ}$ V = 1661.7 (3) Å<sup>3</sup> Z = 4Mo Ka radiation

 $\mu = 0.09 \text{ mm}^{-1}$ T = 294 (2) K

#### Data collection

| Bruker SMART CCD                             | 9949 measured reflections              |
|----------------------------------------------|----------------------------------------|
| diffractometer                               | 4026 independent reflections           |
| Absorption correction: multi-scan            | 3212 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)                    | $R_{\rm int} = 0.018$                  |
| $T_{\rm min} = 0.902, \ T_{\rm max} = 1.000$ |                                        |
| (expected range $= 0.884 - 0.980$ )          |                                        |
|                                              |                                        |

 $0.32 \times 0.24 \times 0.22 \text{ mm}$ 

 $> 2\sigma(I)$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 218 parameters  $wR(F^2) = 0.146$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$ 4026 reflections

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|------|-------------------------|-------------------------|--------------------------------------|
| $O3-H3\cdots N3^{i}$         | 0.82 | 1.94                    | 2.7569 (15)             | 173                                  |
| $C5-H5A\cdots O1^{ii}$       | 0.93 | 2.59                    | 3.406 (2)               | 147                                  |
| $C8 - H8A \cdots O2$         | 0.97 | 2.57                    | 3.485 (2)               | 157                                  |
| $C4-H4A\cdots Cg3^{iii}$     | 0.93 | 3.25                    | 4.004 (3)               | 140                                  |
| $C7-H7A\cdots Cg3$           | 0.93 | 3.16                    | 4.067 (3)               | 165                                  |
| $C18-H18A\cdots Cg2^{iv}$    | 0.96 | 3.03                    | 3.400 (3)               | 105                                  |
| $C18 - H18B \cdots Cg2^{iv}$ | 0.96 | 3.08                    | 3.400 (3)               | 101                                  |
|                              |      |                         |                         |                                      |

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii)  $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (iii) x - 1, y, z; (iv)  $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$ . Cg2 and Cg3 are the centroids of the C2-C7 and C C12-C17 rings, respectively.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON.

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2549).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Il Farmaco, 53, 574-578.
- Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco. 57, 253-257.
- Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339-1341
- Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, 0425-0427.
- Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, 0642-0644.

Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071-8076.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Il Farmaco, 54, 218-223.

supplementary materials

Acta Cryst. (2008). E64, o2180 [doi:10.1107/S1600536808033990]

# 5-(3-Methoxyphenethyl)-4-(2-methoxyphenyl)-4H-1,2,4-triazol-3-ol

# M. Hanif, G. Qadeer, N. H. Rama and W.-Y. Wong

#### Comment

Substituted triazole derivatives display significant biological activities including antimicrobial (Holla *et al.*, 1998), analgesic (Turan-Zitouni *et al.*, 1999), antitumor (Demirbas *et al.*, 2002), antihypertensive (Paulvannan *et al.*, 2000) and antiviral (Kritsanida *et al.*, 2002) activities. The biological activity is closely related to the structure, possibly being due to the presence of the —N—C—S unit (Omar *et al.*, 1986). We are interested in the syntheses and biological activities of the aryloxyacetyl hydrazide derivatives and report herein the synthesis (Fig. 1) and crystal structure of the title compound.

In the molecule of the title compound (Fig. 2), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges, and they are comparable with those observed in related structures (Öztürk *et al.*, 2004*a*, 2004*b*). In the triazole ring, the N3=C11 [1.3459 (17) Å] bond has double bond character. Rings A (C2-C7), B (N1/N2/N3/C10/C11) and C (C12-C17) are, of course, planar and the dihedral angles between them are A/B = 11.79 (3)°, A/C = 89.22 (3)° and B/C = 85.95 (3)°.

In the crystal structure, intramolecular C-H···O and intermolecular O-H···N and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 3), in which they may be effective in the stabilization of the structure. The  $\pi$ — $\pi$  contact between the triazole and 3-methoxyphenyl rings, Cg1···Cg2<sup>i</sup> [symmetry code: (i) 1/2 + x, 1/2 - y, 1/2 + z, where Cg1 and Cg2 are the centroids of the rings B (N1/N2/N3/C10/C11) and A (C2-C7), respectively] may further stabilize the structure, with centroid-centroid distance of 3.916 (3) Å. There also exist C—H··· $\pi$  contacts (Table 1) between the phenyl rings and the methyl group and the 3-methoxyphenyl ring.

#### Experimental

The synthesis of the title compound (Fig. 1) was carried out by refluxing a solution of 4-(2-methoxyphenyl)-1-(3-(3-methoxyphenyl)) propanoyl) semicarbazide (3.43 g, 10 mmol) in NaOH (2M) for 5 h. Single crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield; 71%, m.p. 454-455 K).

### Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with  $U_{iso}(H) = xU_{eq}(C,O)$ , where x = 1.2 for aromatic and methylene H and x = 1.5 for all other H atoms.

#### **Figures**



Fig. 1. The formation of the title compound.



Fig. 2. The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 3. A partial packing diagram. Hydrogen bonds are shown as dashed lines.

# 5-(3-Methoxyphenethyl)-4-(2-methoxyphenyl)-4H-1,2,4-triazol-3-ol

| Crystal data                   |                                                 |
|--------------------------------|-------------------------------------------------|
| $C_{18}H_{19}N_3O_3$           | $F_{000} = 688$                                 |
| $M_r = 325.36$                 | $D_{\rm x} = 1.301 {\rm ~Mg~m^{-3}}$            |
| Monoclinic, $P2_1/n$           | Melting point: 454(1) K                         |
| Hall symbol: -P 2yn            | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| a = 10.5030 (11)  Å            | Cell parameters from 9949 reflections           |
| <i>b</i> = 14.1172 (14) Å      | $\theta = 2.4 - 28.3^{\circ}$                   |
| c = 11.3226 (11)  Å            | $\mu=0.09~mm^{-1}$                              |
| $\beta = 98.192 \ (2)^{\circ}$ | T = 294 (2) K                                   |
| $V = 1661.7 (3) \text{ Å}^3$   | Block, yellow                                   |
| Z = 4                          | $0.32 \times 0.24 \times 0.22 \text{ mm}$       |

## Data collection

| Bruker SMART CCD<br>diffractometer                             | 4026 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 3212 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.018$                  |
| T = 294(2)  K                                                  | $\theta_{\text{max}} = 28.3^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 2.4^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -8 \rightarrow 14$                |
| $T_{\min} = 0.902, \ T_{\max} = 1.000$                         | $k = -18 \rightarrow 18$               |
| 9949 measured reflections                                      | $l = -14 \rightarrow 14$               |

# Refinement

| Refinement on $F^2$        | Secondary atom site location: difference Fourier map     |
|----------------------------|----------------------------------------------------------|
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |

 $R[F^2 > 2\sigma(F^2)] = 0.048$ H-atom parameters constrained  $w = 1/[\sigma^2(F_0^2) + (0.0854P)^2 + 0.2782P]$  $wR(F^2) = 0.146$ where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.02 $\Delta \rho_{\text{max}} = 0.56 \text{ e} \text{ Å}^{-3}$ 4026 reflections  $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$ 218 parameters Primary atom site location: structure-invariant direct

methods

# Extinction correction: none

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| Fractional | atomic | coordinates | and | isotropic o | or equivalent | t isotropic | displacement | <i>parameters</i> | $(Å^2$ | ') |
|------------|--------|-------------|-----|-------------|---------------|-------------|--------------|-------------------|--------|----|
|            |        |             |     | 1           | 1             | 1           | 1            | 1                 | 1      | /  |

|     | x            | У            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|--------------|-------------------------------|
| 01  | 0.34683 (13) | 0.50242 (9)  | 0.80167 (14) | 0.0726 (4)                    |
| O2  | 0.76819 (12) | 0.19899 (8)  | 0.72362 (9)  | 0.0538 (3)                    |
| 03  | 0.99935 (9)  | 0.12807 (7)  | 0.96442 (12) | 0.0554 (3)                    |
| H3  | 1.0436       | 0.0800       | 0.9720       | 0.083*                        |
| N1  | 0.78261 (10) | 0.16861 (7)  | 0.95758 (10) | 0.0367 (2)                    |
| N2  | 0.70357 (11) | 0.02988 (8)  | 1.00087 (11) | 0.0439 (3)                    |
| N3  | 0.83555 (11) | 0.02434 (8)  | 0.99977 (11) | 0.0439 (3)                    |
| C1  | 0.4774 (2)   | 0.53003 (16) | 0.8160 (3)   | 0.0908 (8)                    |
| H1A | 0.4829       | 0.5979       | 0.8133       | 0.136*                        |
| H1B | 0.5180       | 0.5033       | 0.7529       | 0.136*                        |
| H1C | 0.5200       | 0.5077       | 0.8915       | 0.136*                        |
| C2  | 0.31961 (15) | 0.40769 (11) | 0.80274 (13) | 0.0485 (3)                    |
| C3  | 0.18992 (15) | 0.38405 (12) | 0.79300 (14) | 0.0525 (4)                    |
| НЗА | 0.1277       | 0.4313       | 0.7837       | 0.063*                        |
| C4  | 0.15417 (14) | 0.29079 (12) | 0.79721 (14) | 0.0512 (4)                    |
| H4A | 0.0675       | 0.2751       | 0.7909       | 0.061*                        |
| C5  | 0.24656 (13) | 0.21925 (11) | 0.81085 (13) | 0.0447 (3)                    |
| H5A | 0.2216       | 0.1563       | 0.8151       | 0.054*                        |
| C6  | 0.37517 (13) | 0.24212 (10) | 0.81805 (12) | 0.0401 (3)                    |
| C7  | 0.41200 (14) | 0.33670 (11) | 0.81434 (13) | 0.0463 (3)                    |
| H7A | 0.4986       | 0.3523       | 0.8196       | 0.056*                        |
| C8  | 0.47827 (14) | 0.16657 (11) | 0.83435 (14) | 0.0480 (3)                    |
| H8A | 0.5424       | 0.1807       | 0.7831       | 0.058*                        |
| H8B | 0.4400       | 0.1059       | 0.8100       | 0.058*                        |
|     |              |              |              |                               |

# supplementary materials

| C9   | 0.54420 (13) | 0.15956 (10) | 0.96390 (13) | 0.0440 (3) |
|------|--------------|--------------|--------------|------------|
| H9A  | 0.5505       | 0.2225       | 0.9987       | 0.053*     |
| H9B  | 0.4913       | 0.1214       | 1.0090       | 0.053*     |
| C10  | 0.67491 (12) | 0.11732 (9)  | 0.97478 (11) | 0.0378 (3) |
| C11  | 0.88697 (13) | 0.10760 (9)  | 0.97304 (12) | 0.0390 (3) |
| C12  | 0.79093 (12) | 0.26338 (9)  | 0.91477 (12) | 0.0374 (3) |
| C13  | 0.80818 (19) | 0.33857 (12) | 0.99299 (15) | 0.0583 (4) |
| H13A | 0.8117       | 0.3284       | 1.0746       | 0.070*     |
| C14  | 0.8202 (2)   | 0.42943 (12) | 0.94939 (19) | 0.0751 (6) |
| H14A | 0.8323       | 0.4805       | 1.0017       | 0.090*     |
| C15  | 0.8143 (2)   | 0.44367 (11) | 0.82921 (18) | 0.0652 (5) |
| H15A | 0.8226       | 0.5048       | 0.8006       | 0.078*     |
| C16  | 0.79629 (15) | 0.36961 (11) | 0.74987 (14) | 0.0504 (4) |
| H16A | 0.7918       | 0.3806       | 0.6684       | 0.061*     |
| C17  | 0.78478 (12) | 0.27786 (9)  | 0.79249 (12) | 0.0386 (3) |
| C18  | 0.7433 (3)   | 0.21156 (16) | 0.59719 (16) | 0.0767 (6) |
| H18A | 0.7335       | 0.1508       | 0.5590       | 0.115*     |
| H18B | 0.8140       | 0.2447       | 0.5708       | 0.115*     |
| H18C | 0.6659       | 0.2477       | 0.5769       | 0.115*     |
|      |              |              |              |            |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| 01  | 0.0682 (8)  | 0.0439 (6)  | 0.1023 (10) | 0.0042 (5)   | 0.0004 (7)   | 0.0152 (6)  |
| O2  | 0.0795 (8)  | 0.0433 (5)  | 0.0401 (5)  | 0.0046 (5)   | 0.0140 (5)   | 0.0015 (4)  |
| O3  | 0.0367 (5)  | 0.0395 (5)  | 0.0911 (8)  | 0.0079 (4)   | 0.0121 (5)   | 0.0164 (5)  |
| N1  | 0.0359 (5)  | 0.0333 (5)  | 0.0410 (5)  | 0.0062 (4)   | 0.0063 (4)   | 0.0081 (4)  |
| N2  | 0.0369 (6)  | 0.0378 (6)  | 0.0574 (7)  | 0.0038 (5)   | 0.0083 (5)   | 0.0089 (5)  |
| N3  | 0.0366 (6)  | 0.0354 (6)  | 0.0596 (7)  | 0.0049 (4)   | 0.0067 (5)   | 0.0105 (5)  |
| C1  | 0.0816 (15) | 0.0595 (11) | 0.1215 (19) | -0.0176 (10) | -0.0199 (13) | 0.0270 (12) |
| C2  | 0.0502 (8)  | 0.0443 (7)  | 0.0498 (8)  | 0.0048 (6)   | 0.0030 (6)   | 0.0096 (6)  |
| C3  | 0.0448 (8)  | 0.0574 (9)  | 0.0541 (8)  | 0.0171 (7)   | 0.0023 (6)   | 0.0060 (7)  |
| C4  | 0.0336 (7)  | 0.0659 (10) | 0.0532 (8)  | 0.0044 (6)   | 0.0030 (6)   | 0.0014 (7)  |
| C5  | 0.0388 (7)  | 0.0483 (7)  | 0.0459 (7)  | -0.0014 (6)  | 0.0020 (5)   | -0.0004 (6) |
| C6  | 0.0360 (6)  | 0.0455 (7)  | 0.0381 (6)  | 0.0050 (5)   | 0.0025 (5)   | -0.0013 (5) |
| C7  | 0.0360 (7)  | 0.0498 (8)  | 0.0527 (8)  | 0.0015 (6)   | 0.0055 (6)   | 0.0075 (6)  |
| C8  | 0.0408 (7)  | 0.0482 (8)  | 0.0536 (8)  | 0.0086 (6)   | 0.0022 (6)   | -0.0071 (6) |
| C9  | 0.0372 (7)  | 0.0454 (7)  | 0.0508 (7)  | 0.0086 (5)   | 0.0106 (6)   | 0.0068 (6)  |
| C10 | 0.0355 (6)  | 0.0390 (6)  | 0.0392 (6)  | 0.0041 (5)   | 0.0066 (5)   | 0.0066 (5)  |
| C11 | 0.0361 (6)  | 0.0347 (6)  | 0.0461 (7)  | 0.0064 (5)   | 0.0053 (5)   | 0.0075 (5)  |
| C12 | 0.0374 (6)  | 0.0317 (6)  | 0.0435 (7)  | 0.0055 (5)   | 0.0070 (5)   | 0.0069 (5)  |
| C13 | 0.0829 (12) | 0.0440 (8)  | 0.0467 (8)  | 0.0023 (8)   | 0.0046 (8)   | -0.0013 (6) |
| C14 | 0.1112 (16) | 0.0392 (8)  | 0.0729 (12) | -0.0050 (9)  | 0.0063 (11)  | -0.0075 (8) |
| C15 | 0.0784 (12) | 0.0353 (7)  | 0.0836 (12) | -0.0019 (7)  | 0.0172 (9)   | 0.0135 (8)  |
| C16 | 0.0552 (8)  | 0.0438 (7)  | 0.0547 (8)  | 0.0058 (6)   | 0.0159 (7)   | 0.0167 (6)  |
| C17 | 0.0380 (6)  | 0.0356 (6)  | 0.0435 (7)  | 0.0057 (5)   | 0.0102 (5)   | 0.0057 (5)  |
| C18 | 0.1174 (18) | 0.0713 (12) | 0.0423 (9)  | 0.0071 (12)  | 0.0147 (10)  | 0.0014 (8)  |

# Geometric parameters (Å, °)

| О3—Н3      | 0.8200      | С9—Н9В       | 0.9700      |
|------------|-------------|--------------|-------------|
| N2—N3      | 1.3902 (16) | C10—N2       | 1.2946 (17) |
| C1—O1      | 1.413 (3)   | C10—N1       | 1.3801 (17) |
| C1—H1A     | 0.9600      | C11—O3       | 1.2325 (16) |
| C1—H1B     | 0.9600      | C11—N3       | 1.3459 (17) |
| C1—H1C     | 0.9600      | C11—N1       | 1.3854 (16) |
| C2—O1      | 1.3680 (19) | C12—C13      | 1.378 (2)   |
| C2—C7      | 1.388 (2)   | C12—C17      | 1.3919 (18) |
| C2—C3      | 1.391 (2)   | C12—N1       | 1.4299 (15) |
| C3—C4      | 1.372 (2)   | C13—C14      | 1.387 (2)   |
| С3—НЗА     | 0.9300      | C13—H13A     | 0.9300      |
| C4—C5      | 1.394 (2)   | C14—C15      | 1.368 (3)   |
| C4—H4A     | 0.9300      | C14—H14A     | 0.9300      |
| C5—C6      | 1.3798 (19) | C15—C16      | 1.374 (3)   |
| С5—Н5А     | 0.9300      | C15—H15A     | 0.9300      |
| C6—C7      | 1.393 (2)   | C16—C17      | 1.3934 (19) |
| C6—C8      | 1.5123 (19) | C16—H16A     | 0.9300      |
| С7—Н7А     | 0.9300      | C17—O2       | 1.3563 (17) |
| C8—C9      | 1.533 (2)   | C18—O2       | 1.429 (2)   |
| C8—H8A     | 0.9700      | C18—H18A     | 0.9600      |
| C8—H8B     | 0.9700      | C18—H18B     | 0.9600      |
| C9—C10     | 1.4857 (18) | C18—H18C     | 0.9600      |
| С9—Н9А     | 0.9700      |              |             |
| C2         | 118.00 (14) | H8A—C8—H8B   | 107.9       |
| C17—O2—C18 | 117.66 (13) | C10—C9—C8    | 113.03 (11) |
| С11—О3—Н3  | 109.5       | С10—С9—Н9А   | 109.0       |
| C10—N1—C11 | 107.79 (10) | С8—С9—Н9А    | 109.0       |
| C10-N1-C12 | 129.03 (10) | С10—С9—Н9В   | 109.0       |
| C11—N1—C12 | 122.62 (11) | С8—С9—Н9В    | 109.0       |
| C10—N2—N3  | 104.56 (11) | Н9А—С9—Н9В   | 107.8       |
| C11—N3—N2  | 112.67 (11) | N2-C10-N1    | 111.34 (11) |
| O1—C1—H1A  | 109.5       | N2-C10-C9    | 125.71 (12) |
| O1—C1—H1B  | 109.5       | N1—C10—C9    | 122.95 (11) |
| H1A—C1—H1B | 109.5       | O3—C11—N3    | 129.95 (12) |
| O1—C1—H1C  | 109.5       | O3—C11—N1    | 126.41 (12) |
| H1A—C1—H1C | 109.5       | N3—C11—N1    | 103.64 (11) |
| H1B—C1—H1C | 109.5       | C13—C12—C17  | 120.63 (12) |
| O1—C2—C7   | 124.22 (15) | C13-C12-N1   | 120.78 (13) |
| O1—C2—C3   | 115.93 (14) | C17—C12—N1   | 118.57 (12) |
| C7—C2—C3   | 119.85 (14) | C12—C13—C14  | 119.61 (16) |
| C4—C3—C2   | 119.81 (14) | C12-C13-H13A | 120.2       |
| С4—С3—Н3А  | 120.1       | C14—C13—H13A | 120.2       |
| С2—С3—НЗА  | 120.1       | C15—C14—C13  | 119.77 (17) |
| C3—C4—C5   | 120.63 (14) | C15—C14—H14A | 120.1       |
| C3—C4—H4A  | 119.7       | C13—C14—H14A | 120.1       |
| C5—C4—H4A  | 119.7       | C14—C15—C16  | 121.40 (15) |

# supplementary materials

| C6—C5—C4  | 119.82 (14) | C14—C15—H15A  | 119.3       |
|-----------|-------------|---------------|-------------|
| С6—С5—Н5А | 120.1       | C16—C15—H15A  | 119.3       |
| С4—С5—Н5А | 120.1       | C15—C16—C17   | 119.44 (15) |
| С5—С6—С7  | 119.76 (13) | C15—C16—H16A  | 120.3       |
| C5—C6—C8  | 121.34 (13) | C17—C16—H16A  | 120.3       |
| С7—С6—С8  | 118.86 (13) | O2—C17—C12    | 115.80 (11) |
| C2—C7—C6  | 120.11 (13) | O2—C17—C16    | 125.05 (13) |
| С2—С7—Н7А | 119.9       | C12—C17—C16   | 119.14 (13) |
| С6—С7—Н7А | 119.9       | O2-C18-H18A   | 109.5       |
| С6—С8—С9  | 112.34 (11) | O2-C18-H18B   | 109.5       |
| С6—С8—Н8А | 109.1       | H18A—C18—H18B | 109.5       |
| С9—С8—Н8А | 109.1       | O2-C18-H18C   | 109.5       |
| С6—С8—Н8В | 109.1       | H18A—C18—H18C | 109.5       |
| C9—C8—H8B | 109.1       | H18B-C18-H18C | 109.5       |

# Hydrogen-bond geometry (Å, °)

| D—H···A                       | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-------------------------------|-------------|--------------|--------------|------------|
| O3—H3···N3 <sup>i</sup>       | 0.82        | 1.94         | 2.7569 (15)  | 173        |
| C5—H5A····O1 <sup>ii</sup>    | 0.93        | 2.59         | 3.406 (2)    | 147        |
| C8—H8A···O2                   | 0.97        | 2.57         | 3.485 (2)    | 157        |
| C4—H4A…Cg3 <sup>iii</sup>     | 0.93        | 3.25         | 4.004 (3)    | 140        |
| C7—H7A···Cg3                  | 0.93        | 3.16         | 4.067 (3)    | 165        |
| C18—H18A····Cg2 <sup>iv</sup> | 0.96        | 3.03         | 3.400 (3)    | 105        |
| C18—H18B···Cg2 <sup>iv</sup>  | 0.96        | 3.08         | 3.400 (3)    | 101        |
|                               |             |              |              |            |

Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1/2, y-1/2, -z+3/2; (iii) x-1, y, z; (iv) x-1/2, -y-1/2, z-3/2.

Fig. 1



4-(2-methoxyphenyl)-1-(3-(3methoxyphenyl)propanoyl)semicarbazide

5-(3-methoxyphenethyl)-4-(2-methoxyphenyl)-4H-1,2,4-triazol-3-ol







